
Formal Methods:
What’s in it for me?

2005 FAA/NASA Software and Complex Electronic Hardware Conference

Research supported by
NASA Langley Research Center and Honeywell

Cooperative agreement NCC-1-399

Darren Cofer

Honeywell Laboratories
Minneapolis MN

darren.cofer@honeywell.com
612-951-7279

FM team
Samar Dajani-Brown

Eric Engstrom
Vu Ha

Murali Rangarajan

2 HL-formal-methods.ppt

Outline

• Context
- verification of safety-critical avionics software (and HW)
- complex, real-time, fault tolerant
- why do we need formal methods?

• Approach
- model checking
- tools

• Examples
- real-time operating system for avionics
- triplex sensor voter

• Conclusions
- What’s in it for me?

3 HL-formal-methods.ppt

What’s in it for me?

• Depends on who you are…
- avionics manufacturer
- airframer/integrator
- airline
- regulator
- flying public

• …and what you do
- engineer
- QA/test
- DER
- management

• Attempt to answer from a viewpoint of a
practitioner (rather than a researcher)
- how to apply real tools to real systems for real airplanes

4 HL-formal-methods.ppt

Formal methods

• analysis is a necessary part of any engineering discipline
• formal methods = specification & analysis of SW designs
• why analyze software?

- imagine building the mechanical components of an aircraft today
without structural & aerodynamic analyses

“We’ll just build it and see if it flies.”
- all software-related failures are due to design errors

doesn’t break or wear out
testing and HW fault-models inadequate

- software is too easy to change
susceptible to new errors at all life-cycle stages

- software errors are logical errors
obscured by representation
difficult to detect errors by inspection

5 HL-formal-methods.ppt

• using ideas and techniques from mathematics and formal logic
• to specify and reason about computing systems
• to increase design assurance and eliminate defects
• by allowing comprehensive analysis of requirements and design
• and complete exploration of system behavior
• including fault conditions
• augmented by automated SW tools

What is/are formal methods?

6 HL-formal-methods.ppt

Test vs. formal analysis

- Inputs
Requirements + Test cases +
Executable + Target platform

- Execute
- Outputs

Test results
Structural coverage metrics

- Inputs
Requirements + Design +
Environment
(assumptions)

- Reachability analysis
- Outputs

Correctness
State space coverage
Fault handling behaviors

initial configuration

test execution trace
error state

reachable state space

7 HL-formal-methods.ppt

Model checking

• System modeled as automaton (state machine)
• Performs exhaustive state space search with various mechanisms for

reducing state space
- explicit state model checkers (Spin)
- symbolic model checkers (SMV)

• Properties specified as
- assertions on particular system states
- path specifications (sequences of states – temporal logic)

• Checks if properties hold in any or all states or sequences of states
- or that negation of property is not reachable in the model

• Originally developed for hardware and protocol verification
- current research focusing on software verification

• Main advantage: produces counter-examples for aid in debugging
• Main disadvantage: state explosion problem

- this problem is slowly being mitigated by various advanced techniques and
Moore’s law

• Approaches
- model derived from design specification
- model derived from implementation / code

8 HL-formal-methods.ppt

Tools: SPIN

• Holzmann (Bell Labs, NASA)
• Input

- Promela – guarded command language
• Analysis features

- LTL, assertions, liveness
- asynchronous processes
- partial order reduction, compression,

state space approximation
• Output

- results & statistics
- message sequence chart

9 HL-formal-methods.ppt

Tools: SMV/NuSMV

• Clarke (CMU) and others
• Text interface
• synchronous data flow language
• CTL specs
• counter examples as sequence of states

MODULE main

VAR
state1: {n1, t1, c1};

ASSIGN
init(state1) := n1;
next(state1) :=
case

(state1 = n1) & (state2 = t2): t1;
(state1 = n1) & (state2 = n2): t1;
(state1 = n1) & (state2 = c2): t1;
(state1 = t1) & (state2 = n2): c1;
(state1 = t1) & (state2 = t2) & (turn = 1): c1;
(state1 = c1): n1;
1: state1;

esac;

VAR
state2: {n2, t2, c2};

<…>

VAR
turn: {1, 2};

ASSIGN
init(turn) := 1;
next(turn) :=
case

(state1 = n1) & (state2 = t2): 2;
(state2 = n2) & (state1 = t1): 1;
1: turn;

esac;

SPEC
EF((state1 = c1) & (state2 = c2))

SPEC
AG((state1 = t1) -> AF (state1 = c1))

SPEC
AG((state2 = t2) -> AF (state2 = c2))

10 HL-formal-methods.ppt

Tools: SCADE

• Esterel
Technologies

• Integrated CAD
and verification

• graphical
synchronous data
flow language

• Design Verifier
• Import-export

Simulink designs

11 HL-formal-methods.ppt

Example 1: RTOS

• Integrated Modular Avionics
- applications of different criticalities share resources (CPU)
- reduced cost, weight, maintenance (reduce amount of “level A”

code)
• Real-time operating system with time partitioning

- scheduler ensures that actions of one thread cannot impact
other threads’ guaranteed access to resources

- RT control tasks: every thread gets its allotted CPU budget
every period

- benefits: fault containment, system upgrades
• Why use formal methods

- concurrency, complexity, real-time guarantees
- high integrity required (level A)

• Goal
- demonstrate effectiveness of model checking to analyze key

properties of safety-critical software that would be difficult or
impossible to establish by traditional means

- advanced debugging: augments existing development process

function1

function2

function3

shared resource

function1

function2

function3

12 HL-formal-methods.ppt

Primus Epic integrated avionics system

Business, regional,
and commuter
aircraft

• Bombardier Global
Express

• Raytheon Hawker
Horizon 450

• Agusta-Bell AB-139

• Gulfstream V-SP

• Sino Swearingen
SJ30-2

• Cessna Citation
Sovereign

• Deos real-time OS
-Primarily business, regional, commuter aircraft
-Primary flight controls, autopilot, displays,
navigation...
-Rate monotonic scheduling with priority
inheritance
-Time & space partitioning, dynamic threads, slack
scheduling, aperiodic interrupts, mutexes
-Portable to various COTS CPUs
-DO-178B Level A

13 HL-formal-methods.ppt

Unique aspects of this work

• Software analyzed is an actual IMA RTOS
- Deos – currently in service in several aircraft product lines

• Model derived directly from C++ source code
- analysis results closely linked to real system

• Overhead accounting computations explicitly modeled
- critical to timing guarantees

• Advanced scheduling features
- complicates both implementation and analysis

14 HL-formal-methods.ppt

Deos components and terminology

• Process – basic entity for resource mgt. (time, memory, mutexes, I/O,…)
• Thread – sequential execution unit (function + period + time budget)
• API – application programmer’s interface, governs & validates interactions with OS
• HAL – HW abstraction layer, interface to CPU
• PAL – platform abstraction layer, interface to timers and I/O
• Registry – system configuration parameters
• Kernel – scheduler, memory management, etc.

Process 1 Process 2 Process 3

API

Kernel

PALHAL

CPU Platform Hardware

Platform
Registry

Thread Thread Thread Thread Thread ThreadApplication

Deos

Hardware

15 HL-formal-methods.ppt

Everything you need to know about...

• Rate Monotonic Scheduling
- Always run the highest priority thread that is ready to run
- All threads are periodic and are guaranteed to receive a

statically specified CPU budget every period
specify the worst case execution time (WCET) for safety critical
threads

- Programmers do not assign priorities to threads
thread priority is inferred from period
threads with shorter periods have higher priorities

- Thread notifies kernel when it has finished its execution for a
period

kernel preempts a thread that attempts to execute beyond its CPU
budget

- Deos uses harmonic periods
permits ~100% utilization of CPU time

16 HL-formal-methods.ppt

RMS – pictorially

• Idle

• Slow

• Medium

• Fast

Thread is executing
Thread is ready for execution but has not yet been activated by scheduler
Thread has been preempted by higher priority thread
Thread has completed for period
Thread completes for period, activate another thread
Thread preempted by higher priority thread
Thread consumes budget without completing for period (TBE)
Thread resumed with propagation of TBE exception

tick tick tick tick tick tick tick

17 HL-formal-methods.ppt

Structure of model

Process 1 Process 2 Process 3

API

Kernel

PALHAL

CPU Platform Hardware

Platform
Registry

Thread Thread Thread Thread Thread ThreadApplication

Deos

Hardware

Real system

Thread
Thread
Thread PlatformKernel

API

Kernel classes
and methods

API calls

context
switch

interrupts

read/write
timer

invoke kernel methods

Automata to
drive kernel

Translated
kernel code

Model

Environment

System to
be verified

- Separation of system and
environment

- System modeled with high
fidelity, traceability to real
system

certification
implementation, autocoding

- Environment
abstract, only model
necessary parts
fault injection

18 HL-formal-methods.ppt

High fidelity model of software

• Model derived from kernel code (rather than specification)
- Accuracy (design = code)
- Utility in verification/certification
- Level of detail required to capture subtle timing behaviors

• void Scheduler::initializeInterruptEvents()
• {
• interruptEvents =
• new InterruptEvent*[numInterrupts];

• for (platformInterruptNumber i = 0;
• i < numInterrupts; i++)
• {
• interruptEvents[i] = new InterruptEvent(

i);
• ignorePlatformInterrupt[i] = false;
• }
• }

• inline Scheduler_initializeInterruptEvents()
• {
• InterruptEvent_PTR
• Scheduler_interruptEvents[InterruptEvent_MAX];
•
• byte i = 0;
• do
• :: (i < InterruptEvent_MAX) ->
•

NEW_InterruptEvent(Scheduler_interruptEvents[i]);
• i++;
• :: else -> break;
• od;
• }

Deos scheduler
• 55 files
• 800KB C++ files
• ~15K LOC

SPIN model
• 20 classes
• 120 methods
• >4000 LOC (Promela)

inline Thread_waitForNextInterrupt() {
assert(currentBudget.remainingBudget >= 2*contextSwitchPlusDelta+cacheBonus);

19 HL-formal-methods.ppt

Time partitioning error trace

Main: 5/20

User1: 21/60

User2: 21/60

5 12

8

12
delete

timer timer

15

8

0 20 40 60

idle

timer

preempt

Idle never ran
User2: 16/21User1 budget

returned to main
(normalized to 7/20)

LTL property -- time partitioning
[](startPeriod -> (!endPeriod U idleRun))

Penix, Visser, Engstrom, Larson, Weininger, “Verification of Time
Partitioning in the DEOS Scheduler Kernel,” ICSE 2000

budget should have been
returned at end of user1 period

20 HL-formal-methods.ppt

Time partitioning

• With slack and ISRs, idle thread may never run: need new
approach
- Assertion checked in the tick interrupt handler
- Detects the problem after scheduler has over-committed
- Consists of 2 parts –

one for currently running thread
another for threads in all periods ending at this tick

- Disjunction of 3 conditions –
thread is the Idle thread (no deadline)
thread received its full budget (remaining budget = 0)
thread voluntarily completed for period

• No errors found
- Doesn’t hold for ISR threads

can’t guarantee interrupt occurs early enough in period
but interrupts don’t interfere with other threads

21 HL-formal-methods.ppt

Overhead accounting

• Scheduler must ensure that time spent executing a thread (including
kernel overhead) does not exceed thread budget
- Timer loaded when thread is dispatched, counts down to 0

response delayed by critical section, e.g. kernel service (LCS)
scheduling actions to pick next thread (SCHED)
read timer, decrement thread budget, load timer for next thread (TimerOff)

- Pre-deduct overhead quantities from thread budget at dispatch
(“contextSwitchPlusDelta”)

minimum time required to execute a thread that does nothing (USER = 0)
- Implies minimum budget a thread must have to be placed on runnable queue

ISR thread must have 2x this amount since it compensates interrupted thread for both context
switches
more complicated for slack-consuming threads

CTXin USER LCS SCHED TimerOff

start charging
CPU time

(load timer)

stop charging
CPU time

(read timer)

timer
interrupt

(timer = 0)

timer interrupt
serviced

(timer < 0)

timer setting

thread budget

22 HL-formal-methods.ppt

Scheduler operations & overhead

Thread
Thread
Thread PlatformKernel

API

Kernel classes
and methods

API calls

context
switch

interrupts

read/write
timer

invoke kernel methods

Traps (SW interrupts)
Triggered when user thread
attempts to execute kernel
service
Services may include critical
sections (interrupts disabled)
charge time to calling thread

- System tick interrupt
Generated periodically by
platform hardware
Tick handler may cause
currently running thread to be
preempted
compensate running thread
from total CPU utilization

- Timer interrupt
Generated by platform
hardware
Produced when thread timer
runs down to zero
charge to thread

- User interrupts
Generated asynchronously by
I/O or other hardware
May cause currently running
thread to be preempted by ISR
thread
ISR compensates interrupted
thread

23 HL-formal-methods.ppt

Precondition for SOPEvent::makeThreadWait()

Main Scheduler Timer

resume Timer = 13

timer
interrupt

CPUallowanceExceeded

Timer = 0CFP

Pre-condition
fails!

makeThreadWait

slack
consumer

Available
slack = 2

Start timer with
2 – 2*CSPD

• makeThreadWait() precondition:
remaining budget ≥
contextSwitchPlusDelta

- available slack = 2
- main thread uses budget and

requests slack
- 2*contestSwitchPlusDelta pre-

deducted from available slack,
leaving 0

- main decides to immediately
complete for period

- when adding main to
startOfPeriodEvent queue the
precondition is violated

Action:
• when makeThreadWait() is called, the time
remaining for the thread has not yet been
compensated to add contextSwitchPlusDelta
• precondition changed to: remainingBudget ≥ 0

24 HL-formal-methods.ppt

Example 1: summary

- Verified the main time partitioning assertion and function
preconditions for many different system configurations, including
interrupt threads and slack scheduling

Increased assurance that this complex system has been designed and
implemented correctly

- Identified several instances where preconditions were inconsistent
with the intended operation of the scheduler

These have been corrected and will improve the quality of code reviews
performed in future verification and certification activities

- Identified a number of modeling errors
Enabled us to refine the model to reflect realistic system behaviors and
increased confidence in our analysis results

- Detected several unexpected system behaviors
Improves our understanding of the operation of the system – helpful for
maintenance and system upgrades

25 HL-formal-methods.ppt

• Problem
- Algorithm for management of redundant sensors (3)

air data, inertial reference, etc.
- Design captured in Simulink
- Mixture of algorithmic features from several designs

• Why use formal methods
- Fault handling behavior
- High integrity required (level A)
- Leverage Model-Based Development:

Flight SW can be autocoded from design
• Objectives

- Comprehensive assessment of design correctness
- Assess automation of translation/verification process
- Tool evaluation (SMV, SAL, SCADE)

control

actuatorsvoter

sensorsensorsensor

Example 2: Triplex sensor voter

26 HL-formal-methods.ppt

Input signals (3)

Inputs valid (3)

Output signal

Output valid

Persistence
threshold counter

Averaging

Filter
differences

- Digitized sensor signals sampled at 20 Hz
- Valid flag supplied by sensor hardware
- Use valid flag and comparison of redundant measurements to detect and isolate

sensor faults
- Tolerate “false alarms” due to noise, transients, small differences
- Output – composite robust sensor output and valid flag

Sensor voter operation

27 HL-formal-methods.ppt

Persistence threshold counter
• Find the “hidden” state machine...

Δ = sample time
Tp = persistence threshold
N = Tp/Δ = # of steps to persistence threshold

0 2ΔΔ (N-1)Δ

Tp=NΔ

Persistent
Miscompare

Over thresh Over thresh Over thresh

Over thresh

Under threshUnder threshUnder thresh

2NΔ (N+1)Δ

Under thresh

Over thresh

Over thresh Over thresh

Under thresh

Under thresh

Under thresh

28 HL-formal-methods.ppt

voter
inputSignal

inputValid
data

outputSignal

outputValid
World

Sensor

Sensor

Sensor

andGateVector

out
in1

in2

MODULE andGateVector(in1, in2)
VAR
out : array 0 .. 2 of boolean;

ASSIGN
out[0] := in1[0] & in2[0];
out[1] := in1[1] & in2[1];
out[2] := in1[2] & in2[2];

Voter model

• Voter model
- capture behavior of sensor voter algorithm

• Sensor model (environment)
- measure ‘true’ world data and provide signals to voter
- fault injection – valid flags, noise, signal errors

• Output signal requirements
- synthesize correct output signal
- limit transients in output signal

• Fault handling requirements
- detect sensor faults and isolate faulty sensor
- must not produce false alarms due to transient conditions

29 HL-formal-methods.ppt

Environment model

Environment System To Verify

voter
inputSignal

inputValid
data

outputSignal

outputValid
World

Sensor

Sensor

Sensor

non-deterministically
generates input data
for sensors

fault injection

enforce single fault
hypothesis

NOTE:
Environment must permit all
interesting operational behaviors,
but prohibit all unrealistic behaviors

specifications

30 HL-formal-methods.ppt

0 valid sensors
Output not valid

1 valid sensor
Output valid

2 valid sensors
Miscompare,

Output not valid

2 valid sensors
No miscompare,

Output valid

3 valid sensors
Output valid

Valid sensors have
persistent miscompare.
(Both are still valid)

Two pairs of valid sensors
have persistent miscompare.
Eliminate common sensor.

1 valid sensor goes
(hardware) invalid

Valid sensor goes
(hardware) invalid

1 valid sensor goes
(hardware) invalid

1 valid sensor goes
(hardware) invalid

Persistent
miscompare
clears

init

SPEC
AG((sensorVoter.numValid=3)^(~sensor1.valid)->

AF(sensorVoter.numValid=2))

Fault-handling requirements

31 HL-formal-methods.ppt

Computational requirements

• Does computed output agree with the true environmental input
data?
- within some signal tolerance
- within some time bounds for transients

• Transient may occur at time of sensor faults
- requirements more strict for first fault

time

first
error

second
error

Output error magnitude

32 HL-formal-methods.ppt

Example 2: summary

• Precise definition of voter requirements
• Verified computational requirements
• Verified fault handling requirements
• Assessment of 3 model checking tools

33 HL-formal-methods.ppt

Back to “What’s in it for me?”

• Why should we support use of formal methods?
- software engineering best practices

strengthens “analysis” activities, quantitative assessment of design
get it right the first time

- current processes/guidelines not adequate for complex systems
- industry will use if there is a cost advantage

reduced design errors
early detection of errors
improve process predictability
facilitates reuse
automation of manual reviews
alternative to unit test

- certification authorities should be prepared
proposed changes in DO-178C

DO-178B guidelines
• Quality control – identify and eliminate

design faults
Formal analyses and proofs = “other means”
allowed in Section 6.2 to satisfy verification
process objectives in the case of complex
behaviors that are not amenable to testing

• Quality assurance – identify implementation
errors
Use formal techniques and tools to perform
the reviews and analyses of Section 6.3.2,
identifying and verifying requirements for
functions and components as well as
assumptions regarding their environment

34 HL-formal-methods.ppt

Formal methods forecast

• Short term – What can we do now?
- practical engineering tool

advanced debugging tools for early defect detection/elimination
- augment current processes to increase assurance
- early design verification

provides a framework for accurate implementation
- some domain specific tools and automation

SCADE, extensions to Simulink

• Long term – Where do we want to be?
- model-based development
- fully integrated into development process
- invisible?
- certification credit for formal analysis

alternative to unit testing in some cases
analysis of design, distinct from implementation

35 HL-formal-methods.ppt

www.honeywell.com

	Formal Methods: �What’s in it for me?��2005 FAA/NASA Software and Complex Electronic Hardware Conference��Research supported
	Outline
	What’s in it for me?
	Formal methods
	What is/are formal methods?
	Test vs. formal analysis
	Model checking
	Tools: SPIN
	Tools: SMV/NuSMV
	Tools: SCADE
	Example 1: RTOS
	Primus Epic integrated avionics system
	Unique aspects of this work
	Deos components and terminology
	Everything you need to know about...
	RMS – pictorially
	Structure of model
	High fidelity model of software
	Time partitioning error trace
	Time partitioning
	Overhead accounting
	Scheduler operations & overhead
	Precondition for SOPEvent::makeThreadWait()
	Example 1: summary
	Example 2: Triplex sensor voter
	Sensor voter operation
	Persistence threshold counter
	Voter model
	Environment model
	Fault-handling requirements
	Computational requirements
	Example 2: summary
	Back to “What’s in it for me?”
	Formal methods forecast

